Kamis, 16 Oktober 2014

pertidaksamaan linier (KALKULUS)

 PERSAMAAN LINIER


Persamaan linear adalah sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem koordinat Kartesius.
 
 
 
 
Contoh grafik dari suatu persamaan linear dengan nilai m=0,5 dan b=2 (garis merah)
Bentuk umum untuk persamaan linear adalah
y = mx + b.\,
Dalam hal ini, konstanta m akan menggambarkan gradien garis, dan konstanta b merupakan titik potong garis dengan sumbu-y. Persamaan lain, seperti x3, y1/2, dan xy bukanlah persamaan linear.

Contoh

Contoh sistem persamaan linear dua variabel:
x + 2y = 10,\,,
3b + 5c = 4d+ 20,\,,
5x - 3y +6 = -9x + 8y+ 4,\,

Sistem Persamaan Linear Dua Variabel

Persamaan linear yang rumit, seperti di sebut di atas, bisa ditulis dengan menggunakan hukum aljabar agar menjadi bentuk yang lebih sederhana. Seperti contoh, huruf besar di persamaan merupakan konstanta, dan x dan y adalah variabelnya.

Bentuk Umum

Ax + By + C = 0,\,
dimana konstanta A dan B bila dijumlahkan, hasilnya bukan angka nol. Konstanta dituliskan sebagai A ≥ 0, seperti yang telah disepakati ahli matematika bahwa konstanta tidak boleh sama dengan nol. Grafik persamaan ini bila digambarkan, akan menghasilkan sebuah garis lurus dan setiap garis dituliskan dalam sebuah persamaan seperti yang tertera diatas. Bila A ≥ 0, dan x sebagai titik potong, maka titik koordinat-xadalah ketika garis bersilangan dengan sumbu-x (y = 0) yang digambarkan dengan rumus -c/a. Bila B≥ 0, dan y sebagai titik potong, maka titik koordinat- y adalah ketika garis bersilangan dengan sumbu-y (x = 0), yang digambarkan dengan rumus -c/b.

Bentuk standar

ax + by = c,\,
di mana, a dan b jika dijumlahkan, tidak menghasilkan angka nol dan a bukanlah angka negatif. Bentuk standar ini dapat diubah ke bentuk umum, tapi tidak bisa diubah ke semua bentuk, apabila a dan b adalah nol.

Bentuk titik potong gradien

Sumbu-y

y = mx + b,\,
dimana m merupakan gradien dari garis persamaan, dan titik koordinat y adalah persilangan dari sumbu-y. Ini dapat digambarkan dengan x = 0, yang memberikan nilai y = b. Persamaan ini digunakan untuk mencari sumbu-y, dimana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik. Sedangkan X merupakan koordinat x yang anda taruh di grafik.

Sumbu-x

x = \frac{y}{m} + c,\,
dimana m merupakan gradien dari garis persamaan, dan c adalah titik potong-x, dan titik koordinat x adalah persilangan dari sumbu-x. Ini dapat digambarkan dengan y = 0, yang memberikan nilai x = c. Bentuk y/m dalam persamaan sendiri berarti bahwa membalikkan gradien dan mengalikannya dengan y. Persamaan ini tidak mencari titik koordinat x, dimana nilai y sudah diberikan.
ء-

Sistem persamaan linear lebih dari dua variabel

Sebuah persamaan linear bisa mempunyai lebih dari dua variabel, seperti berikut ini:
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.
di mana dalam bentuk ini, digambarkan bahwa a1 adalah koefisien untuk variabel pertama, x1, dan n merupakan jumlah variabel total, serta b adalah konstanta.(http://id.wikipedia.org/wiki/Persamaan_linear)

 



Sifat-Sifat Pertidaksamaan
  1. tanda pertidaksamaan tidak berubah jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama
Jika a < b maka:
a + c < b + c
a – c < b – c
  1. tanda pertidaksamaan tidak berubah jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama
Jika a < b, dan c adalah bilangan positif, maka:
a.c < b.c
a/b < b/c
  1. tanda pertidaksamaan akan berubah jika kedua ruas pertidaksamaan dikali atau dibagi dengan bilangan negatif yang sama
Jika a < b, dan c adalah bilangan negatif, maka:
a.c > b.c
a/c > b/c
  1. tanda pertidaksamaan tidak berubah jika kedua ruas positif masing-masing dikuadratkan
Jika a < b; a dan b sama-sama positif, maka: a2 < b2

Pertidaksamaan Linear
→ Variabelnya berpangkat 1
Penyelesaian:
Suku-suku yang mengandung variabel dikumpulkan di ruas kiri, dan konstanta diletakkan di ruas kanan
Contoh:

Pertidaksamaan Kuadrat
→ Variabelnya berpangkat 2
Penyelesaian:
  1. Ruas kanan dibuat menjadi nol
  2. Faktorkan
  3. Tentukan harga nol, yaitu nilai variabel yang menyebabkan nilai faktor sama dengan nol
  4. Gambar garis bilangannya
Jika tanda pertidaksamaan ≥ atau ≤, maka harga nol ditandai dengan titik hitam •
Jika tanda pertidaksamaan > atau <, maka harga nol ditandai dengan titik putih °
  1. Tentukan tanda (+) atau (–) pada masing-masing interval di garis bilangan. Caranya adalah dengan memasukkan salah satu bilangan pada interval tersebut pada persamaan di ruas kiri.
Tanda pada garis bilangan berselang-seling, kecuali jika ada batas rangkap (harga nol yang muncul 2 kali atau sebanyak bilangan genap untuk pertidaksamaan tingkat tinggi), batas rangkap tidak merubah tanda
  1. Tentukan himpunan penyelesaian
→ jika tanda pertidaksamaan > 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (+)
→ jika tanda  pertidaksamaan < 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (–)
Contoh:
(2x – 1)2 ≥ (5x – 3).(x – 1) – 7
4x2 – 4x + 1 ≥ 5x2 – 5x – 3x + 3 – 7
4x2 – 4x + 1 – 5x2 + 5x + 3x – 3 + 7 ≥ 0
–x2 + 4x + 5 ≥ 0
–(x2 – 4x – 5) ≥ 0
–(x – 5).(x + 1) ≥ 0
Harga nol: x – 5 = 0 atau x + 1 = 0
x = 5 atau x = –1
Garis bilangan:
  • menggunakan titik hitam karena tanda pertidaksamaan ≥
  • jika dimasukkan x = 0 hasilnya positif
  • karena 0 berada di antara –1 dan 5, maka daerah tersebut bernilai positif, di kiri dan kanannya bernilai negatif
  • karena tanda pertidaksamaan ≥ 0, maka yang diarsir adalah yang positif

Jadi penyelesaiannya: {x | –1 ≤ x ≤ 5}

Pertidaksamaan Tingkat Tinggi
→ Variabel berpangkat lebih dari 2
Penyelesaian sama dengan pertidaksamaan kuadrat
Contoh:
(2x + 1)2.(x2 – 5x + 6) < 0
(2x + 1)2.(x – 2).(x – 3) < 0
Harga nol: 2x + 1 = 0 atau x – 2 = 0 atau x – 3 = 0
x = –1/2 atau x = 2 atau x = 3
Garis bilangan:
  • menggunakan titik putih karena tanda pertidaksamaan <
  • jika dimasukkan x = 0 hasilnya positif
  • karena 0 berada di antara –1/2 dan 2, maka daerah tersebut bernilai positif
  • karena –1/2 adalah batas rangkap (–1/2 muncul sebanyak 2 kali sebagai harga nol, jadi –1/2 merupakan batas rangkap), maka di sebelah kiri –1/2 juga bernilai positif
  • selain daerah yang dibatasi oleh batas rangkap, tanda positif dan negatif berselang-seling
  • karena tanda pertidaksamaan ³ 0, maka yang diarsir adalah yang positif

Jadi penyelesaiannya: {x | 2 < x < 3}
Pertidaksamaan Pecahan
→ ada pembilang dan penyebut
Penyelesaian:
  1. Ruas kanan dijadikan nol
  2. Samakan penyebut di ruas kiri
  3. Faktorkan pembilang dan penyebut (jika bisa)
  4. Cari nilai-nilai variabel yang menyebabkan pembilang dan penyebutnya sama dengan nol (harga nol untuk pembilang dan penyebut)
  5. Gambar garis bilangan yang memuat semua nilai yang didapatkan pada langkah 4
Apapun tanda pertidaksamaannya, harga nol untuk penyebut selalu digambar dengan titik putih (penyebut suatu pecahan tidak boleh sama dengan 0 agar pecahan tersebut mempunyai nilai)
  1. Tentukan tanda (+) atau (–) pada masing-masing interval
Contoh 1:

Harga nol pembilang: –5x + 20 = 0
–5x = –20 → x = 4
Harga nol penyebut: x – 3 = 0 → x = 3
Garis bilangan:
→ x = 3 digambar menggunakan titik putih karena merupakan harga nol untuk penyebut


Jadi penyelesaiannya: {x | 3 < x ≤ 4}

Contoh 2:
 

Harga nol pembilang: x – 2 = 0 atau x + 1 = 0
x = 2 atau x = –1
Harga nol penyebut: tidak ada, karena penyebut tidak dapat difaktorkan dan jika dihitung nilai diskriminannya:
D = b2 – 4.a.c = 12 – 4.1.1 = 1 – 4 = –3
Nilai D-nya negatif, sehingga persamaan tersebut tidak mempunyai akar real
(Catatan: jika nilai D-nya tidak negatif, gunakan rumus abc untuk mendapat harga nol-nya)
Garis bilangan:


Jadi penyelesaiannya: {x | x ≤ –1 atau x ≥ 2}
Pertidaksamaan Irasional/Pertidaksamaan Bentuk Akar
→ variabelnya berada dalam tanda akar

Penyelesaian:
  1. Kuadratkan kedua ruas
  2. Jadikan ruas kanan sama dengan nol
  3. Selesaikan seperti menyelesaikan pertidaksamaan linear/kuadrat
  4. Syarat tambahan: yang berada di dalam setiap tanda akar harus ≥ 0
Contoh 1:

Kuadratkan kedua ruas:
x2 – 5x – 6 < x2 – 3x + 2
x2 – 5x – 6 – x2 + 3x – 2 < 0
–2x – 8 < 0
Semua dikali –1:
2x + 8 > 0
2x > –8
x > –4
Syarat 1:
x2 – 5x – 6 ≥ 0
(x – 6).(x + 1) ≥ 0
Harga nol: x – 6 = 0 atau x + 1 = 0
x = 6 atau x = –1
Syarat 2:
x2 – 3x + 2 ≥ 0
(x – 2).(x – 1) ≥ 0
Harga nol: x – 2 = 0 atau x – 1 = 0
x = 2 atau x = 1
Garis bilangan:


Jadi penyelesaiannya: {x | –4 < x ≤ –1 atau x ≥ 6}

Contoh 2:
 
Kuadratkan kedua ruas:
x2 – 6x + 8 < x2 – 4x + 4
x2 – 6x + 8 – x2 + 4x – 4 < 0
–2x + 4 < 0
–2x < –4
Semua dikalikan –1
2x > 4
x > 2
Syarat:
x2 – 6x + 8 ≥ 0
(x – 4).(x – 2) ≥ 0
Harga nol: x – 4 = 0 atau x – 2 = 0
x = 4 atau x = 2
Garis bilangan:


Jadi penyelesaiannya: {x | x ≥ 4}
Pertidaksamaan Nilai Mutlak
→ variabelnya berada di dalam tanda mutlak | ….. |
(tanda mutlak selalu menghasilkan hasil yang positif, contoh: |3| = 3; |–3| = 3)
Pengertian nilai mutlak:

Penyelesaian:
Jika |x| < a berarti: –a < x < a, dimana a ≥ 0
Jika |x| > a berarti: x < –a atau x > a, dimana a ≥ 0

Contoh 1:
|2x – 3| ≤ 5
berarti:
–5 ≤ 2x – 3 ≤ 5
–5 + 3 ≤ 2x ≤ 5 + 3
–2 ≤ 2x ≤ 8
Semua dibagi 2:
–1 ≤ x ≤ 4

Contoh 2:
|3x + 7| > 2
berarti:
3x + 7 < –2 atau 3x + 7 > 2
3x < –2 – 7 atau 3x > 2 – 7
x < –3 atau x > –5/3

Contoh 3:
|2x – 5| < |x + 4|
Kedua ruas dikuadratkan:
(2x – 5)2 < (x + 4)2
(2x – 5)2 – (x + 4)2 < 0
(2x – 5 + x + 4).(2x – 5 – x – 4) < 0    (Ingat! a2 – b2 = (a + b).(a – b))
(3x – 1).(x – 9) < 0
Harga nol: 3x – 1 = 0 atau x – 9 = 0
x = 1/3 atau x = 9
Garis bilangan:


Jadi penyelesaiannya: {x | 1/3 < x < 4}

Contoh 4:
|4x – 3| ≥ x + 1
Kedua ruas dikuadratkan:
(4x – 3)2 ≥ (x + 1)2
(4x – 3)2 – (x + 1)2 ≥ 0
(4x – 3 + x + 1).(4x – 3 – x – 1) ≥ 0
(5x – 2).(3x – 4) ≥ 0
Harga nol: 5x – 2 = 0 atau 3x – 4 = 0
x = 2/5 atau x = 4/3
Syarat:
x + 1 ≥ 0
x ≥ –1
Garis bilangan:


Jadi penyelesaiannya: {x | –1 ≤ x ≤ 2/5 atau x ≥ 4/3}

Contoh 5:
|x – 2|2 – |x – 2| < 2
Misalkan |x – 2| = y
y2 – y < 2
y2 – y – 2 < 0
(y – 2).(y + 1) < 0
Harga nol: y – 2 = 0 atau y + 1 = 0
y = 2 atau y = –1
Garis bilangan:


Artinya:
–1 < y < 2
–1 < |x – 2| < 2
Karena nilai mutlak pasti bernilai positif, maka batas kiri tidak berlaku
|x – 2| < 2
Sehingga:
–2 < x – 2 < 2
–2 + 2 < x < 2 + 2
0 < x < 4

Pertidaksamaan kuadrat adalah pertidaksamaan yang memiliki variabel paling tinggi berpangkat dua. Bentuk umum pertidaksamaan kuadrat dalam variabel x adalah
(i) ax²+ bx + c > 0
(ii) ax²+ bx + c≥0
(iii) ax²+ bx + c < 0
(iv) ax²+ bx + c≤0
dimana a, b, c dan x elemen bilangan riil dan a≠0
Sebelum kita bahas tentang metode penyelesaian pertidaksamaan kuadrat, kita akan ulas kembali tentang interval/selang serta grafik fungsi kuadrat yang akan membantu kita dalam menentukan himpunan penyelesaian pertidak samaan kuadrat nantinya.
1. Interval/Selang
Interval merupakan himpunan bagian bilangan riil. Sebuah interval dapat dilukiskan pada garis bilangan yang berbentuk ruas garis(segmen garis) dan terdapat tanda lebih tebal pada titik yang bersesuaian.
2. Grafik Fungsi Kuadrat
Suatu Grafik fungsi kuadrat berbentuk parabola dengan persamaan y=ax²+bx+c dengan a, b, c elemen bilangan riil dan a≠0. Grafik fungsi kuadrat ini memiliki sifat :
  • Jika a>0 grafik fungsi terbuka ketas, dan sebaliknya jika a<0 grafik fungsi terbuka kebawah.
  • Mmemotong sumbu y jika x=0 dan memotong sumbu x jika y=0.
  • Titik potong terhadap sumbu x ditentukan oleh suatu nilai.
Diskriminan (D=b²-4ac) berlaku ketentuan :
  1. D>0 maka parabola memotong sumbu x di dua titik.
  2. D=0 maka parabola menyinggung sumbu x.
  3. D<0 maka parabola tidak memotong sumbu x.
Macam-macam Grafik fungsi kuadrat dapat ditentukan berdasarkan a>0 dan D<0 maka termasuk definit positif  dan jika a<0 dan D<0 disebut definit negatif. Untuk lebih jelasnya perhatikan tabel dibawah ini.
Langkah-langkah menyelesaian Pertidaksamaan Kuadrat :
1. Rubahlah pertidaksamaan kuadrat menjadi persamaan kuadrat
2. Tentukan akar-akar dari persamaan kuadrat tersebut seperti telah dijelaskan pada materi persamaan kuadrat.
3. Tentukan akar-akar dari persamaan kuadrat pada garis bilangan.
4. Tentukan mana yang termasuk daerah + dan mana yang termasuk daerah -.
5. Tuliskan Hp sesuai soal yang diminta.
contoh :
1. Tentukan himpunan penyelesaian dari http://latex.codecogs.com/gif.latex?%5Cinline%20%5Cdpi%7B100%7D%20x%5E%7B2%7D – 2x – 24 < 0
Jawab:
imegz – 2x – 24 < 0
(x -6)(x +4) < 0
x1 = 6   x2 = -4
Apabila diletakkan ke garis bilangan, daerah yang berharga negatif adalah -4 < x < 6 sehingga daerah tersebut merupakan daerah penyelesaian dari pertidaksamaan imegz – 2x – 24 < 0
2. Tentukan himpunan penyelesaian x– 2x – 3 ≤ 0
    Jawab :
a. Bentuk menjadi persamaan x– 2x – 3 = 0
    b. Difaktorkan (x – 3) (x + 1) = 0,
maka x = 3 atau x=-1
    c. Berdasarka soal daerah yang diminta ≤0  berarti yang bertanda -, sehingga berdasarkan gambar HP {x│-1 ≤ x ≤ 3}.
Sampai disini dulu materi tentang pertidaksamaan kuadrat semoga dapat bermanfaat. Serta jangan lupa baca juga artikel sebelumnya yang telah saya berikan yaitu berkaitan dengan Aljabar, sehingga anda dapat lebih mudah dalam memahami aljabar lanjutan.



2 komentar:

  1. yang kreatif dong
    https://learnwithalice.wordpress.com/2011/07/01/pertidaksamaan/

    BalasHapus
  2. lakukan simulasi matematiknya pake matlab..
    http://cakomp.blogspot.co.id/2016/11/lakukan-simulasi-dengan-matlab.html

    BalasHapus